library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
dat <- read.csv(
text = "let year_2023 vulnerability year_2024
A. 49.61 Cross-site Scripting (XSS) - Reflected 33.99
B. 14.27 Information Disclosure 18.50
C. 11.52 Open Redirect 11.55
D. 4.45 Path Traversal 6.69
E. 4.32 Code Injection 6.56
F. 3.80 Improper Access Control - Generic 5.64
G. 3.27 Privilege Escalation 4.59
H. 3.27 Information Exposure Through Directory Listing 4.59
I. 3.01 SQL Injection 4.20
J. 2.49 Cross-site Scripting (XSS) - Generic 3.67",
sep = "\t"
) |>
select(vulnerability, year_2023, year_2024) |>
mutate(diff = year_2024 - year_2023)
dat_long <- dat |>
select(-diff) |>
pivot_longer(
cols = starts_with("year_"),
names_prefix = "year_",
names_to = "year",
values_to = "perc"
) |>
mutate(vulnerability = as_factor(vulnerability))
dat_long
sorted <- dat_long |>
filter(year == "2024") |>
arrange(perc)
dat_long <- dat_long |>
mutate(vulnerability = factor(vulnerability, levels = sorted$vulnerability))
dat_long |>
ggplot() +
aes(y = vulnerability, x = perc, shape = year, colour = year) +
geom_point(size = 2) +
labs(
y = NULL,
shape = "Year",
colour = "Year",
x = "Percentage",
title = "Breakdown of top 10 (2023/24)"
) +
theme_light() +
scale_colour_manual(values=c("#4357ad", "#48A9A6")) +
xlim(0, NA)
