Little Miss and Mr Men name binariness

Author

@Andi@tech.lgbt

Published

August 17, 2022

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.2     ✔ readr     2.1.4
✔ forcats   1.0.0     ✔ stringr   1.5.0
✔ ggplot2   3.4.2     ✔ tibble    3.2.1
✔ lubridate 1.9.2     ✔ tidyr     1.3.0
✔ purrr     1.0.1     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lintr)

From Table 3 of Pownall, M., & Heflick, N. (2023). Mr. Active and Little Miss Passive? The Transmission and Existence of Gender Stereotypes in Children’s Books. Sex Roles. https://doi.org/10.1007/s11199-023-01409-2

raw_dat <- "Bad 3.18 0.48 1.59 0.61 Bossy 2.50 0.77 1.98 0.61 Brainy 2.96 0.45 4.12 0.71 Brave 3.39 0.66 4.21 0.77 Busy 2.68 0.54 3.04 0.64 Chatterbox 2.19 0.63 2.71 0.84 Cheerful 2.87 0.44 4.56 0.60 Clever 2.99 0.36 4.22 0.69 Clumsy 3.02 0.62 2.22 0.69 Contrary 2.66 0.78 2.25 0.74 Cool 3.31 0.61 4.03 0.74 Curious 2.84 0.56 3.96 0.66 Daydream 2.67 0.62 3.18 0.92 Dizzy 2.38 0.58 2.45 0.71 Dotty 2.26 0.60 2.67 0.75 Fickle 2.52 0.64 1.95 0.59 Forgetful 2.97 0.56 2.11 0.57 Fun 2.95 0.37 4.57 0.64 Funny 3.05 0.41 4.50 0.56 Fussy 2.47 0.74 1.98 0.65 Giggles 2.03 0.56 4.25 0.72 Good 2.93 0.33 4.53 0.70 Greedy 3.31 0.53 1.64 0.65 Grumble 3.45 0.63 1.98 0.51 Grumpy 3.54 0.66 1.71 0.61 Happy 2.88 0.42 4.74 0.54 Helpful 2.65 0.49 4.47 0.60 Hug 2.54 0.62 4.59 0.60 Lazy 3.38 0.54 1.65 0.66 Lucky 2.98 0.36 4.10 0.73 Magic 2.78 0.60 4.15 0.75 Mean 3.02 0.55 1.46 0.63 Messy 3.19 0.69 2.03 0.62 Mischief 3.21 0.70 2.66 0.80 Muddle 2.86 0.46 2.31 0.63 Naughty 3.12 0.68 2.22 0.77 Neat 2.64 0.59 3.67 0.75 Noisy 3.18 0.63 2.29 0.70 Nonsense 3.05 0.47 2.22 0.78 Nosey 2.49 0.68 2.14 0.65 Perfect 2.73 0.59 4.09 1.06 Princess 1.32 0.55 3.13 1.13 Quick 2.99 0.48 3.48 0.65 Quiet 2.82 0.49 2.98 0.55 Rude 3.29 0.57 1.18 0.43 Rush 2.93 0.62 2.63 0.62 Scary 3.23 0.54 1.73 0.72 Scatterbrain 2.39 0.64 2.22 0.68 Shy 2.72 0.62 2.79 0.56 Silly 2.93 0.68 2.71 0.83 Skinny 2.51 0.64 2.73 0.80 Slow 3.18 0.48 2.32 0.63 Small 2.70 0.54 2.90 0.48 Splendid 2.89 0.59 4.45 0.69 Strong 3.52 0.74 4.13 0.67 Stubborn 3.08 0.69 2.12 0.71 Tall 3.50 0.60 3.23 0.61 Tidy 2.76 0.49 3.94 0.74 Tiny 2.39 0.61 3.06 0.57 Trouble 3.28 0.65 1.69 0.65 Uppity 2.78 0.71 1.83 0.69 Wise 3.09 0.58 4.40 0.60 Worry 2.68 0.56 2.02 0.65 Wrong 3.11 0.44 1.78 0.70"

Copying from the pdf removed line breaks (it would have been fine had I copied from the html – anyway…). Turn raw_dat into a data frame and calculate the binariness index.

dat <- strsplit(raw_dat, " ")[[1]] |>
  matrix(ncol = 5, byrow = TRUE) |>
  as.data.frame() |>
  rename(name = V1, masc.mean = V2, masc.SD = V3, pos.mean = V4, pos.SD = V5) |>
  mutate(across(masc.mean:pos.SD, as.numeric)) |>
  mutate(binary = 100 * abs(masc.mean - 3) / 2)
dat
           name masc.mean masc.SD pos.mean pos.SD binary
1           Bad      3.18    0.48     1.59   0.61    9.0
2         Bossy      2.50    0.77     1.98   0.61   25.0
3        Brainy      2.96    0.45     4.12   0.71    2.0
4         Brave      3.39    0.66     4.21   0.77   19.5
5          Busy      2.68    0.54     3.04   0.64   16.0
6    Chatterbox      2.19    0.63     2.71   0.84   40.5
7      Cheerful      2.87    0.44     4.56   0.60    6.5
8        Clever      2.99    0.36     4.22   0.69    0.5
9        Clumsy      3.02    0.62     2.22   0.69    1.0
10     Contrary      2.66    0.78     2.25   0.74   17.0
11         Cool      3.31    0.61     4.03   0.74   15.5
12      Curious      2.84    0.56     3.96   0.66    8.0
13     Daydream      2.67    0.62     3.18   0.92   16.5
14        Dizzy      2.38    0.58     2.45   0.71   31.0
15        Dotty      2.26    0.60     2.67   0.75   37.0
16       Fickle      2.52    0.64     1.95   0.59   24.0
17    Forgetful      2.97    0.56     2.11   0.57    1.5
18          Fun      2.95    0.37     4.57   0.64    2.5
19        Funny      3.05    0.41     4.50   0.56    2.5
20        Fussy      2.47    0.74     1.98   0.65   26.5
21      Giggles      2.03    0.56     4.25   0.72   48.5
22         Good      2.93    0.33     4.53   0.70    3.5
23       Greedy      3.31    0.53     1.64   0.65   15.5
24      Grumble      3.45    0.63     1.98   0.51   22.5
25       Grumpy      3.54    0.66     1.71   0.61   27.0
26        Happy      2.88    0.42     4.74   0.54    6.0
27      Helpful      2.65    0.49     4.47   0.60   17.5
28          Hug      2.54    0.62     4.59   0.60   23.0
29         Lazy      3.38    0.54     1.65   0.66   19.0
30        Lucky      2.98    0.36     4.10   0.73    1.0
31        Magic      2.78    0.60     4.15   0.75   11.0
32         Mean      3.02    0.55     1.46   0.63    1.0
33        Messy      3.19    0.69     2.03   0.62    9.5
34     Mischief      3.21    0.70     2.66   0.80   10.5
35       Muddle      2.86    0.46     2.31   0.63    7.0
36      Naughty      3.12    0.68     2.22   0.77    6.0
37         Neat      2.64    0.59     3.67   0.75   18.0
38        Noisy      3.18    0.63     2.29   0.70    9.0
39     Nonsense      3.05    0.47     2.22   0.78    2.5
40        Nosey      2.49    0.68     2.14   0.65   25.5
41      Perfect      2.73    0.59     4.09   1.06   13.5
42     Princess      1.32    0.55     3.13   1.13   84.0
43        Quick      2.99    0.48     3.48   0.65    0.5
44        Quiet      2.82    0.49     2.98   0.55    9.0
45         Rude      3.29    0.57     1.18   0.43   14.5
46         Rush      2.93    0.62     2.63   0.62    3.5
47        Scary      3.23    0.54     1.73   0.72   11.5
48 Scatterbrain      2.39    0.64     2.22   0.68   30.5
49          Shy      2.72    0.62     2.79   0.56   14.0
50        Silly      2.93    0.68     2.71   0.83    3.5
51       Skinny      2.51    0.64     2.73   0.80   24.5
52         Slow      3.18    0.48     2.32   0.63    9.0
53        Small      2.70    0.54     2.90   0.48   15.0
54     Splendid      2.89    0.59     4.45   0.69    5.5
55       Strong      3.52    0.74     4.13   0.67   26.0
56     Stubborn      3.08    0.69     2.12   0.71    4.0
57         Tall      3.50    0.60     3.23   0.61   25.0
58         Tidy      2.76    0.49     3.94   0.74   12.0
59         Tiny      2.39    0.61     3.06   0.57   30.5
60      Trouble      3.28    0.65     1.69   0.65   14.0
61       Uppity      2.78    0.71     1.83   0.69   11.0
62         Wise      3.09    0.58     4.40   0.60    4.5
63        Worry      2.68    0.56     2.02   0.65   16.0
64        Wrong      3.11    0.44     1.78   0.70    5.5

Plot:

dat %>%
  ggplot(aes(x = reorder(name, desc(binary)), y = binary)) +
  geom_point(size = 2, aes()) +
  coord_flip() +
  labs(x = NULL, y = "Name binariness (%)",
       title = "Little Miss and Mr Men name binariness") +
  theme(legend.position = "none") +
  theme_minimal()